skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Xiang, Wang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This Letter presents a novel, to the best of our knowledge, method to calibrate multi-focus microscopic structured-light three-dimensional (3D) imaging systems with an electrically adjustable camera focal length. We first leverage the conventional method to calibrate the system with a reference focal lengthf0. Then we calibrate the system with other discrete focal lengthsfiby determining virtual features on a reconstructed white plane usingf0. Finally, we fit the polynomial function model using the discrete calibration results forfi. Experimental results demonstrate that our proposed method can calibrate the system consistently and accurately. 
    more » « less
  2. null (Ed.)
    Learning-to-learn – using optimization algorithms to learn a new optimizer – has successfully trained efficient optimizers in practice. This approach relies on meta-gradient descent on a meta-objective based on the trajectory that the optimizer generates. However, there were few theoretical guarantees on how to avoid meta-gradient explosion/vanishing problems, or how to train an optimizer with good generalization performance. In this paper we study the learning-to-learn approach on a simple problem of tuning the step size for quadratic loss. Our results show that although there is a way to design the meta-objective so that the meta-gradient remain polynomially bounded, computing the meta-gradient directly using backpropagation leads to numerical issues that look similar to gradient explosion/vanishing problems. We also characterize when it is necessary to compute the meta-objective on a separate validation set instead of the original training set. Finally, we verify our results empirically and show that a similar phenomenon appears even for more complicated learned optimizers parametrized by neural networks. 
    more » « less